Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(30): e2302084, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37661312

RESUMO

The bactericidal effects of silver nanoparticles (Ag NPs) against infectious strains of multiresistant bacteria is a well-studied phenomenon, highly relevant for many researchers and clinicians battling bacterial infections. However, little is known about the uptake of the Ag NPs into the bacteria, the related uptake mechanisms, and how they are connected to antimicrobial activity. Even less information is available on AgAu alloy NPs uptake. In this work, the interactions between colloidal silver-gold alloy nanoparticles (AgAu NPs) and Staphylococcus aureus (S. aureus) using advanced electron microscopy methods are studied. The localization of the nanoparticles is monitored on the membrane and inside the bacterial cells and the elemental compositions of intra- and extracellular nanoparticle species. The findings reveal the formation of pure silver nanoparticles with diameters smaller than 10 nm inside the bacteria, even though those particles are not present in the original colloid. This finding is explained by a local RElease PEnetration Reduction (REPER) mechanism of silver cations emitted from the AgAu nanoparticles, emphasized by the localization of the AgAu nanoparticles on the bacterial membrane by aptamer targeting ligands. These findings can deepen the understanding of the antimicrobial effect of nanosilver, where the microbes are defusing the attacking silver ions via their reduction, and aid in the development of suitable therapeutic approaches.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Ligas de Ouro/farmacologia , Prata/farmacologia , Staphylococcus aureus , Ligas/farmacologia , Ouro/farmacologia , Bactérias , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Head Face Med ; 11: 10, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25889778

RESUMO

INTRODUCTION: The purpose of the present study was to investigate and compare early biofilm formation on biomaterials, which are being used in contemporary fixed orthodontic treatment. METHODS: This study comprised 10 healthy volunteers (5 females and 5 males) with a mean age of 27.3 +-3.7 years. Three slabs of different orthodontic materials (stainless steel, gold and ceramic) were placed in randomized order on a splint in the mandibular molar region. Splints were inserted intraorally for 48 h. Then the slabs were removed from the splints and the biofilms were stained with a two color fluorescence assay for bacterial viability (LIVE/DEAD BacLight-Bacterial Viability Kit 7012, Invitrogen, Mount Waverley, Australia). The quantitative biofilm formation was analyzed by using confocal laser scanning microscopy (CLSM). RESULTS: The biofilm coverage was 32.7 ± 37.7% on stainless steel surfaces, 59.5 ± 40.0% on gold surfaces and 56.8 ± 43.6% on ceramic surfaces. Statistical analysis showed significant differences in biofilm coverage between the tested materials (p=0.033). The Wilcoxon test demonstrated significantly lower biofilm coverage on steel compared to gold (p=0.011). Biofilm height on stainless steel surfaces was 4.0 ± 7.3 µm, on gold surfaces 6.0 ± 6.6 µm and on ceramic 6.5 ± 6.0 µm. The Friedman test revealed no significant differences between the tested materials (p=0.150). Pairwise comparison demonstrated significant differences between stainless steel and gold (p=0.047). CONCLUSION: Our results indicate that initial biofilm formation seemed to be less on stainless steel surfaces compared with other traditional materials in a short-term observation. Future studies should examine whether there is a difference in long-term biofilm accumulation between stainless steel, gold and ceramic brackets.


Assuntos
Biofilmes/crescimento & desenvolvimento , Imageamento Tridimensional , Microscopia Confocal/métodos , Braquetes Ortodônticos/microbiologia , Adulto , Cerâmica/análise , Feminino , Ouro/análise , Voluntários Saudáveis , Humanos , Masculino , Teste de Materiais/métodos , Ortodontia/métodos , Amostragem , Sensibilidade e Especificidade , Aço Inoxidável/análise , Propriedades de Superfície , Adulto Jovem
3.
Int J Mol Sci ; 16(2): 4327-42, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690041

RESUMO

Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Titânio/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Teste de Materiais , Propriedades de Superfície
4.
Quintessence Int ; 42(7): 565-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21716984

RESUMO

OBJECTIVES: To investigate the formation of oral biofilm on various dental ceramics in vivo. METHOD AND MATERIALS: Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. RESULTS: Significant differences (P < .001) in the bacterial surface coating and in the thickness of the biofilm were found between the various ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). CONCLUSION: Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.


Assuntos
Biofilmes/crescimento & desenvolvimento , Porcelana Dentária/química , Adulto , Óxido de Alumínio/química , Compostos Inorgânicos de Carbono/química , Cerâmica/química , Corantes , Placa Dentária/microbiologia , Facetas Dentárias/microbiologia , Humanos , Teste de Materiais , Maxila , Microscopia Confocal , Compostos de Silício/química , Propriedades de Superfície , Fatores de Tempo , Adulto Jovem , Ítrio/química , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...